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ABSTRACT

In this paper, we formulate versions of convergence theorems for the Itô-

Henstock integral of an operator-valued stochastic process with respect

to a Hilbert space-valued Wiener process. We also prove that every Itô

integrable operator-valued stochastic process is Itô-Henstock integrable

using some versions of convergence theorems established in this paper.
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1. Introduction and Preliminaries

The Henstock integral, which was studied independently by Henstock and
Kurzweil in the 1950s and later known as the Henstock-Kurzweil integral, is
one of the notable integrals that was introduced which in some sense is more
general than the Lebesgue integral. To avoid an extensive study of measure the-
ory, Henstock-Kurzweil integration had been deeply studied and investigated
by numerous authors, see Gordon (1994), Henstock (1988), Kurzweil (2000),
Lee (1989), Lee and Výborný (2000), Lee (2011). The Henstock-Kurzweil in-
tegral is a Riemann-type de�nition of an integral which is more explicit and
minimizes the technicalities in the classical approach of the Lebesgue integral.
This approach to integration is known as the generalized Riemann approach or
Henstock approach.

In stochastic calculus, it is not possible to formulate the stochastic integral
by means of Riemann approach for the reason that the integrands are highly
oscillating and the paths of the integrators are not of bounded variation. For
the same reason, it is not even possible to de�ne the stochastic integral as
a Riemann-Stieltjes integral, see Mikosch (1998). In the typical approach of
stochastic integration, the stochastic integral of a real-valued stochastic process,
which is adapted to a �ltration, is attained from a limit of stochastic integrals
of simple processes. This approach is almost similar in de�ning the Lebesgue
integral of a measurable function. Hence, to give a more explicit de�nition
and reduce the technicalities in the classical way of de�ning the stochastic
integral in the real-valued case, Henstock approach to stochastic integration
had already been studied in several papers, see Chew et al. (2003), McShane
(1969), Pop-Stojanovic (1972), Toh and Chew (2003, 2005).

In in�nite dimensional spaces, the stochastic integral of an operator-valued
stochastic process, adapted to a normal �ltration, is obtained by extending
an isometry from the space of elementary processes to the space of continu-
ous square-integrable martingales. In this case, the value of the integrand is
a bounded linear operator and the integrator is a Q-Wiener process, a Hilbert
space-valued Wiener process which is dependent on a nonnegative, symmetric,
and trace-class operator Q. This approach requires a deep study of measure
theory and functional analysis. In Labendia et al. (2018), the authors intro-
duced a new approach to stochastic integrals in in�nite dimensional space and
de�ned the Itô-Henstock integral of an operator-valued stochastic process with
respect to a Q-Wiener process and formulated a version of Itô's formula, the
stochastic counterpart of the classical chain rule of di�erentiation.
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In this paper, we revisit the concept of Itô-Henstock integral for the operator-
valued stochastic process with respect to a Q-Wiener process and establish
versions of convergence theorems. We then use some of the convergence the-
orems formulated in this paper to show that the classical Itô integral of an
operator-valued stochastic process can be de�ned using Henstock approach.

Throughout this paper, (Ω,F , {Ft},P) be a �ltered probability space, B(H)
be the Borel σ-�eld of a Banach space H which is also separable, and L(h) be
the probability distribution or the law of a random variable h : Ω→ H.

A stochastic process f : [0, T ] × Ω → H, or simply a process {ft}0≤t≤T , is
said to be adapted to a �ltration {Ft} if ft is Ft-measurable for all t ∈ [0, T ].
When no confusion arises, we may refer to a process adapted to {Ft} as simply
an adapted process.

Let U and V be separable Hilbert spaces. Denote by L(U, V ) the space of
all bounded linear operators from U to V , L(U) := L(U,U), Qu := Q(u) if
Q ∈ L(U, V ), and L2(Ω, V ) the space of all square-integrable random variables
from Ω to V . The adjoint or dual Q∗ of an operator Q ∈ L(U) is the unique
map Q∗ ∈ L(U) such that 〈Q∗u, u′〉U = 〈u,Qu′〉U for all u, u′ ∈ U . An
operator Q ∈ L(U) is said to be self-adjoint or symmetric if for all u, u′ ∈
U , 〈Qu, u′〉U = 〈u,Qu′〉U and is said to be nonnegative if for every u ∈ U ,
〈Qu, u〉U ≥ 0. Using the Square-root Lemma (Reed and Simon, 1980, p.196), if

Q ∈ L(U) is nonnegative, then there exists a unique operator Q
1
2 ∈ L(U) such

that Q
1
2 is nonnegative and (Q

1
2 )2 = Q.

Let {ej}∞j=1, or simply {ej}, be an orthonormal basis (abbrev. as ONB)
in U . If Q ∈ L(U) is nonnegative, then the trace of Q is de�ned by tr Q =∑∞
j=1 〈Qej , ej〉U . It is shown in (Reed and Simon, 1980, p.206) that tr Q is

well-de�ned and independent of the choice of ONB. An operator Q : U → U is

said to be trace-class if tr [Q] := tr (QQ∗)
1
2 <∞. Denote by L1(U) the space

of all trace-class operators on U , which is known (Reed and Simon, 1980, p.209)
to be a Banach space with norm ‖Q‖1 = tr [Q]. If Q ∈ L(U) is a nonnegative,
symmetric, and trace-class operator, then there exists an ONB {ej} ⊂ U and a
sequence {λj}, λj > 0 ∀j ∈ N, such that Qej = λjej for all j ∈ N and λj → 0
as j → ∞ (Reed and Simon, 1980, p.203). We shall call the sequence of pairs
{λj , ej} an eigensequence de�ned by Q.

Let Q : U → U be either nonnegative symmetric trace-class operator or
Q = 1U , where 1U is the identity function on U . If Q is a trace-class operator,
let {λj , ej} be an eigensequence de�ned by Q. Then the subspace UQ := Q

1
2U

of U equipped with the inner product 〈u, v〉UQ
=
∑∞
j=1

1
λj
〈u, ej〉U 〈v, ej〉U is a
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separable Hilbert space with
{√

λjej
}
as its ONB, see (Da Prato and Zabczyk,

1992, p.90), (Gawarecki and Mandrekar, 2011, p.23).

Let {fj} be an ONB in UQ. An operator S ∈ L(UQ, V ) is said to be Hilbert-

Schmidt if
∑∞
j=1 ‖Sfj‖

2
V =

∑∞
j=1 〈Sfj , Sfj〉V < ∞. Denote by L2(UQ, V )

the space of all Hilbert-Schmidt operators from UQ to V , which is known
(Prévôt and Röckner, 2007, p.112) to be a separable Hilbert space with norm

‖S‖L2(UQ,V ) =
√∑∞

j=1 ‖Sfj‖
2
V . The Hilbert-Schmidt operator S ∈ L2(UQ, V )

and the norm ‖S‖L2(UQ,V ) are independent of the choice of the ONB, see

(Da Prato and Zabczyk, 1992, p.418), (Prévôt and Röckner, 2007, p.111). It
is shown in (Gawarecki and Mandrekar, 2011, p.25) that L(U, V ) is properly
contained in L2(UQ, V ).

Let Q : U → U be a nonnegative, symmetric, and trace-class operator,
{λj , ej} be an eigensequence de�ned by Q, and {Bj} be a sequence of indepen-
dent Brownian motions (abbrev. as BM). The process

W̃t :=

∞∑
j=1

√
λjBj(t)ej (1)

is called a Q-Wiener process in U . The series in (1) converges in L2(Ω, U). For

each u ∈ U , denote W̃t(u) :=

∞∑
j=1

√
λjBj(t) 〈ej , u〉U , where the series converges

in L2(Ω,R). By the Strong law of large numbers (Ghahramani, 2005, p.489),
it does not necessarily follow that there exists a U -valued process W with

W̃t(u)(ω) = 〈Wt(ω), u〉U P-almost surely (abbrev. as P-a.s.). (2)

However, given a nonnegative, symmetric, and trace-class operator Q, a U -
valued process satisfying (2) can be de�ned. We call the process W a U -valued
Q-Wiener process. This process is an extension of the BM . It should be noted

that
Wt(ej)√

λj

, j = 1, 2, . . . , is a sequence of real-valued BM , see (Da Prato and

Zabczyk, 1992, p.87).

A �ltration {Ft} on a probability space (Ω,F ,P) is called normal if (i) F0

contains all elements A ∈ F such that P(A) = 0, and (ii) Ft = Ft+ :=
⋂
s>t

Fs

for all t ∈ [0, T ]. A Q-Wiener process Wt, t ∈ [0, T ] is called a Q-Wiener
process with respect to a �ltration if (i) Wt is adapted to {Ft}, t ∈ [0, T ] and
(ii) Wt − Ws is independent of Fs for all 0 ≤ s ≤ t ≤ T . It is shown in
(Prévôt and Röckner, 2007, p.16) that a U -valued Q-Wiener process W (t),
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t ∈ [0, T ], is a Q-Wiener process with respect to a normal �ltration. From now
onwards, a �ltered probability space (Ω,F , {Ft},P) shall mean a probability
space equipped with a normal �ltration.

An adapted process M : [0, T ]×Ω→ V is said to be a martingale if (i) for
all t ∈ [0, T ], Mt is Bochner integrable, i.e. E [‖Mt‖V ] < ∞ and (ii) for any
0 ≤ s ≤ t ≤ T , E

[
Mt

∣∣Fs] = Ms P-a.s.. A martingale M : [0, T ] × Ω → V
is said to be square-integrable if MT ∈ L2(Ω, V ). It is known (Prévôt and
Röckner, 2007, p.21) that the space of all continuous square-integrable martin-

galesM2
T is a Banach space with norm ‖M‖M2

T
:= supt∈[0,T ]

(
E

[
‖Mt‖2V

]) 1
2

=(
E

[
‖MT ‖2V

]) 1
2

, and the Q-Wiener process W ∈M2
T .

An adapted process f : [0, T ] × Ω → L(U, V ) is called an elementary pro-
cess if there is a �nite sequence {tj}nj=0, n ∈ N, with 0 = t0 < t1 < · · · <
tn = T and a �nite sequence of random variables ϕ, {ϕj}, j = 0, 1, . . . , n − 1,
such that (i) ϕ : (Ω,F0) → (L2(UQ, V ),B(L2(UQ, V ))) and ϕj : (Ω,Ftj ) →
(L2(UQ, V ),B(L2(UQ, V ))) are measurable with ϕ(ω), ϕj(ω) ∈ L(U, V ); and

(ii) f(t, ω) = ϕ(ω)1{0}(t) +

n−1∑
j=0

ϕj(ω)1(tj ,tj+1](t). Denote by E := E(U, V )

the space of all elementary processes. We say that an elementary process f
is bounded if there exists M > 0 such that ‖f(t, ω)‖L2(UQ,V ) ≤ M for all

(t, ω) ∈ [0, T ] × Ω. Denote by Λ0 the space of all bounded elementary pro-
cesses. Then the Itô integral of an elementary process f with respect to W is
de�ned by

(I)

∫ t

0

fs dWs :=

n−1∑
j=0

ϕj(Wtj+1∧t −Wtj∧t) for t ∈ [0, T ].

It is shown in (Prévôt and Röckner, 2007, p.23) that if f ∈ E , then the Itô

integral (I)

∫ t

0

fs dWs ∈M2
T .

The next result is called the Itô isometry on E which gives the norm ‖·‖E
on E . It should be noted that the integral on the right hand side of the equality
is a Lebesgue integral, indicated by (L).

Proposition 1.1. (Prévôt and Röckner, 2007, Proposition 2.3.5). If f ∈ E,
then ∥∥∥∥∥(I)

∫ (·)

0

fs dWs

∥∥∥∥∥
2

M2
T

= E

[
(L)

∫ T

0

‖fs‖2L2(UQ,V ) ds

]
<∞.
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For f ∈ E , let ‖f‖E :=

√√√√
E

[
(L)

∫ T

0

‖fs‖2L2(UQ,V ) ds

]
. We then construct

an equivalence class with respect to ‖·‖E and identify (E , ‖·‖E) as a normed
space, see (Royden and Fitzpatrick, 2007, p.394). In view of Proposition 1.1,

for f ∈ E ,

√√√√
E

[
(L)

∫ T

0

‖fs‖2L2(UQ,V ) ds

]
= ‖f‖E so that the mapping from

(E , ‖·‖E) to (M2
T , ‖·‖M2

T
) is an isometry. This mapping can be uniquely ex-

tended to a bounded operator from (E , ‖·‖E) to (M2
T , ‖·‖M2

T
), which is also an

isometry.

Let Λ2 := Λ2(UQ, V ) be the space of all processes f : [0, T ]×Ω→ L2(UQ, V )
such that

(i) f : ([0, T ]×Ω,B([0, T ])×F)→ (L2(UQ, V ),B(L2(UQ, V ))) is measurable;

(ii) f is adapted to {Ft}; and

(iii) ‖f‖E =

√√√√
E

[
(L)

∫ T

0

‖fs‖2L2(UQ,V ) ds

]
<∞.

Hence, Λ0 ⊂ E ⊂ Λ2. It is shown in (Gawarecki and Mandrekar, 2011, p.28)
that (Λ2, ‖·‖E) is a Hilbert space.

The next result implies that E is dense in Λ2 so that E = Λ2.

Proposition 1.2. (Gawarecki and Mandrekar, 2011, Proposition 2.2) If f ∈
Λ2, then there exists a sequence {f (n)}, fn ∈ Λ0, with∥∥∥f (n) − f

∥∥∥2

E
= E

[
(L)

∫ T

0

∥∥∥f (n)
t − ft

∥∥∥2

L2(UQ,V )
dt

]
→ 0 as n→∞.

A stochastic process f : [0, T ]× Ω→ L2(UQ, V ) is said to be Itô integrable
if f ∈ Λ2 and the Itô integral of f with respect to W is the unique isometric
linear extension of the mapping

f(·)→ (I)

∫ T

0

fs dWs
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from the class of bounded elementary processes to L2(Ω, V ), to a mapping from

Λ2 to L
2(Ω, V ), such that the image of f(t, ω) = ϕ(ω)χ{0}(t)+

n−1∑
j=0

ϕj(ω)χ(tj ,tj+1](t)

is

n−1∑
j=0

ϕj(Wtj+1
−Wtj ). We de�ne the Itô integral process (I)

∫ t

0

, 0 ≤ t ≤ T ,

for f ∈ ΛI by

(I)

∫ t

0

fs dWs = (I)

∫ T

0

fsχ[0,t](s) dWs.

Theorem 1.1. (Gawarecki and Mandrekar, 2011, Theorem 2.3) The stochastic

integral f → (I)

∫ (·)

0

fs dWs with respect to W is an isometry between Λ2 and

the space of continuous square-integrable martingalesM2
T ,

E

[∥∥∥∥(I)

∫ t

0

fs dWs

∥∥∥∥2

V

]
= E

[
(L)

∫ t

0

‖fs‖2L2(UQ,V ) ds

]
<∞

for t ∈ [0, T ].

2. Itô-Henstock Integral and Versions of

Convergence Theorems

In this section, assume that U and V are separable Hilberts spaces, Q : U →
U is a nonnegative, symmetric, and trace-class operator, {λj , ej} is an eigense-
quence de�ned by Q, and W is a U -valued Q-Wiener process. A stochastic
process f : [0, T ]×Ω→ L(U, V ) means a process measurable as mappings from
[0, T ]× Ω,B([0, T ])×F) to (L2(UQ, V ),B(L2(UQ, V ))).

Throughout this paper, the given closed interval [0, T ] is nondegenerate, i.e.
0 < T and can be replaced with any closed interval [a, b]. If no confusion arises,

we may write (D)
∑

instead of

n∑
i=1

for the given �nite collection D. We shall

use the same de�nition of belated partial division employed by the authors in
Chew et al. (2003) to de�ne the Itô-Henstock integral of an L(U, V )-valued
stochastic process with respect to a U -valued Q-Wiener process.

De�nition 2.1. Let δ : [0, T ]→ (0,∞). A �nite collectionD = {((ξi, vi], ξi)}ni=1

of interval-point pairs is a δ-�ne belated partial division of [0, T ] if

(i) {(ξi, vi]}ni=1 is a disjoint collection of subintervals in [0, T ]; and
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(ii) for all i ∈ {1, 2, . . . , n}, (ξi, vi] ⊂ [ξi, ξi + δ(ξi)).

The term partial is used in De�nition 2.1 since the �nite collection of disjoint
left-open subintervals of [0, T ] may not cover the entire interval [0, T ]. Using
the Vitali covering lemma, the following concept can be de�ned.

De�nition 2.2. Given η > 0, a given δ-�ne belated partial division D =
{((ξ, v], ξ)} is said to be a (δ, η)-�ne belated partial division of [0, T ] if∣∣∣T − (D)

∑
(v − ξ)

∣∣∣ ≤ η.
This type of partial division is the basis to which we de�ne the Itô-Henstock

integral.

De�nition 2.3. An adapted process f : [0, T ] × Ω → L(U, V ) is said to be
Itô-Henstock integrable, or IH-integrable, on [0, T ] with respect to W if there
exists A ∈ L2(Ω, V ) such that for every ε > 0, there is a δ : [0, T ] → (0,∞)
and a number η > 0 such that for any (δ, η)-�ne belated partial division D =
{((ξi, vi], ξi)}ni=1 of [0, T ], we have

E

[
‖S(f,D, δ, η)−A‖2V

]
< ε,

where

S(f,D, δ, η) := (D)
∑

fξ(Wv −Wξ) :=

n∑
i=1

fξi(Wvi −Wξi).

In this case, f is IH-integrable to A on [0, T ] and A is called the IH-integral

of f which will be denoted by (IH)

∫ T

0

ft dWt or (IH)

∫ T

0

f dW .

We note that the given closed and bounded interval [0, T ] is nondegenerate,

i.e. 0 < T . For convenience, we shall denote (IH)

∫ 0

0

ft dWt by the zero

random variable 0 ∈ L2(Ω, V ).

Example 2.1. Let f : [0, T ] × Ω → L(U, V ) be an adapted process with

E

[
‖ft‖2L2(UQ,V )

]
= 0 almost everywhere (abbrev. as a.e.) on [0, T ]. Then

f is IH-integrable to 0 on [0, T ].

It is worth noting that the Itô-Henstock integral possesses the standard
properties of an integral namely, uniqueness, linearity, integrability on every
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subinterval of [0, T ], and Cauchy criterion. The proofs of the following results
are standard in Henstock-Kurzweil integration, hence omitted.

Theorem 2.1. A process f : [0, T ] × Ω → L(U, V ) is IH-integrable on [0, T ]
if and only if there exist A ∈ L2(Ω, V ), a decreasing sequence {δn(ξ)}, δn :
[0, T ] → (0,∞), and a decreasing sequence {ηn}, ηn > 0, such that for any
(δn, ηn)-�ne belated partial division Dn of [0, T ], we have

E

[
‖S(f,Dn, δn, ηn)−A‖2V

]
→ 0 as n→∞.

In this case, A = (IH)

∫ T

0

ft dWt.

Lemma 2.1. (Henstock Lemma (Weak Version)). Let f be IH-integrable on

[0, T ] and F (u, v) := (IH)

∫ v

u

ft dWt for any (u, v] ⊂ [0, T ]. Then for every

ε > 0, there exists a δ : [0, T ]→ (0,∞) such that whenever D = {((ξ, v], ξ)} is
a δ-�ne belated partial division of [0, T ], we have

E

[∥∥∥(D)
∑
{fξ(Wv −Wξ)− F (ξ, v)}

∥∥∥2

V

]
< ε.

Theorem 2.2. (Itô Isometry). Let f be IH-integrable on [0, T ]. Then

E

[
‖ft‖2L2(UQ,V )

]
is Lebesgue integrable on [0, T ] and

E

∥∥∥∥∥(IH)

∫ T

0

ft dWt

∥∥∥∥∥
2

V

 = (L)

∫ T

0

E

[
‖ft‖2L2(UQ,V )

]
dt <∞.

Next, we characterize the Itô-Henstock integral using AC2[0, T ]-property, a
version of absolute continuity.

De�nition 2.4. A process F : [0, T ] × Ω → V is said to be AC2[0, T ] if for
every ε > 0, there exists η > 0 such that for any �nite collection D = {(ξ, v]}
of disjoint subintervals of [0, T ] with (D)

∑
(v − ξ) < η, we have

E

[∥∥∥(D)
∑

(Fv − Fξ)
∥∥∥2

V

]
:=

∫
Ω

∥∥∥(D)
∑

(F (v, ω)− F (ξ, ω))
∥∥∥2

V
dP < ε.

It is not di�cult to show that the Itô-Henstock integral is AC2[0, T ].
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Theorem 2.3. Let f be IH-integrable on [0, T ] and de�ne

Ft := (IH)

∫ t

0

fs dWs for all t ∈ [0, T ].

Then F is AC2[0, T ].

Theorem 2.4. Let f : [0, T ]× Ω→ L(U, V ) be an adapted process. Then f is
IH-integrable on [0, T ] if and only if there exists a process F : [0, T ]× Ω→ V
such that

(i) F is AC2[0, T ] and

(ii) for every ε > 0, there exists a δ : [0, T ] → (0,∞) such that whenever
D = {((ξ, v], ξ)} is a δ-�ne belated partial division of [0, T ], we have

E

[∥∥∥(D)
∑
{fξ(Wv −Wξ)− (Fv − Fξ)}

∥∥∥2

V

]
< ε.

Proof. Suppose that f is IH-integrable. Then (i) and (ii) hold by Theorem
2.3 and the weak version of Henstock lemma.

Conversely, assume that (i) and (ii) hold. Let ε > 0 be given. Since F is
AC2[0, T ], choose η > 0 such that whenever {(ξj , vj ]}mj=1 is a �nite collection

of subintervals (ξj , vj ] ⊂ [0, T ] with

m∑
j=1

|vj − ξj | < η we have

E


∥∥∥∥∥∥
m∑
j=1

(Fvj − Fξj )

∥∥∥∥∥∥
2

V

 < ε

4
.

Let D = {((ξ, v], ξ)} be a (δ, η)-�ne belated partial division of [0, T ] and let Dc

be the collection of all subintervals of [0, T ] which are not included in the set
D. Since F is AC2[0, T ],

E

[∥∥∥(Dc)
∑

(Fv − Fξ)
∥∥∥2

V

]
<
ε

4
.

Hence,
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E

[∥∥∥(D)
∑

fξ(Wv −Wξ)− (FT − F0)
∥∥∥2

V

]

≤ 2E

[∥∥∥(D)
∑
{fξ(Wv −Wξ)− (Fv − Fξ)}

∥∥∥2

V

]
+2E

[∥∥∥(Dc)
∑

(Fv − Fξ)
∥∥∥2

V

]
< ε.

Thus, f is IH-integrable on [0, T ]. 2

Lemma 2.2. Let f be IH-integrable on [0, T ] and de�ne

F (ξ, v) := (IH)

∫ v

ξ

ft dWt

for all (ξ, v] ⊂ [0, T ]. Then for any disjoint intervals (a, b], (u, v] ⊂ [0, T ],

(i) F has the orthogonal increment property, i.e. E [〈F (a, b), F (u, v)〉V ] = 0;

(ii) E [〈fa(Wb −Wa), F (u, v)〉V ] = 0.

Proof. (i) Assume that b ≤ u. By Theorem 2.1, there exist a decreas-
ing sequence {δn(ξ)}, δn : [0, T ] → (0,∞) and a decreasing sequence {ηn},
ηn > 0, such that for any (δn, ηn)-�ne belated partial divisions Dn(a, b) =
{((ξi, vi], ξi)}mi=1 and Dn(u, v) = {((ξj , vj ], ξj)}pj=1 of [a, b] and [u, v], respec-
tively, we have

E

[
‖S(f,Dn(a, b), δn, ηn)− F (a, b)‖2V

]
→ 0 as n→∞

and
E

[
‖S(f,Dn(u, v), δn, ηn)− F (u, v)‖2V

]
→ 0 as n→∞.

From (Labendia et al., 2018, Lemma 3.5), for every n ∈ N

E [〈S(f,Dn(a, b), δn, ηn), S(f,Dn(u, v), δn, ηn)〉V ]

= E

 m∑
i=1

p∑
j=1

〈
fξi(Wvi −Wξi), fξj (Wvj −Wξj )

〉
V

 = 0.

Since S(f,Dn(a, b), δn, ηn) → F (a, b) and S(f,Dn(u, v), δn, ηn) → F (u, v) in
L2(Ω, V ) as n→∞, it follows that

E [〈S(f,Dn(a, b), δn, ηn), S(f,Dn(u, v), δn, ηn)〉V ]→ E [〈F (a, b), F (u, v)〉V ]
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as n→∞, see (Zeidler, 1990, p.413). Thus, E [〈F (a, b)F (u, v)〉V ] = 0.

(ii) Note that for all n ∈ N,

E [〈fa(Wb −Wa), S(f,Dn(u, v), δn, ηn)〉V ]

= E

 p∑
j=1

〈
fa(Wb −Wa), fξj (Wvj −Wξj )

〉
V

 = 0.

Since fa(Wb − Wa) → fa(Wb − Wa) and S(f,Dn(u, v), δn, ηn) → F (u, v) in
L2(Ω, V ) as n→∞, it follows that

E [〈fa(Wb −Wa), S(f,Dn(u, v), δn, ηn)〉V ]→ E [〈fa(Wb −Wa), F (u, v)〉V ]

as n→∞. Thus E [〈fa(Wb −Wa), F (u, v)〉V ] = 0. 2

Lemma 2.3. Let f be IH-integrable on [0, T ] and de�ne

F (ξ, v) := (IH)

∫ v

ξ

ft dWt

for all (ξ, v] ⊂ [0, T ]. Let {(ξi, vi]}ni=1 be a �nite disjoint collection of subinter-
vals in [0, T ]. Then

(i) E

∥∥∥∥∥
n∑
i=1

fξ(Wv −Wξ)

∥∥∥∥∥
2

V

 =

n∑
i=1

(v − ξ)E
[
‖fξ‖2L2(UQ,V )

]
;

(ii) E

∥∥∥∥∥
n∑
i=1

{fξ(Wv −Wξ)− F (ξ, v)}

∥∥∥∥∥
2

V


=

n∑
i=1

E

[
‖fξ(Wv −Wξ)− F (ξ, v)‖2V

]
;

(iii) E

∥∥∥∥∥
n∑
i=1

F (ξ, v)

∥∥∥∥∥
2

V

 =

n∑
i=1

E

[
‖F (ξ, v)‖2V

]
.

Proof. (i) This is immediate from (Labendia et al., 2018, Lemma 3.6).

(ii) Let {(ξi, vi]}ni=1 be a �nite disjoint collection of subintervals in [0, T ].
Then by Lemma 2.2, we have

576 Malaysian Journal of Mathematical Sciences



Convergence Theorems for the Itô-Henstock Integrable Operator-Valued Stochastic Process

E

∥∥∥∥∥
n∑
i=1

{fξi(Wvi −Wξi)− F (ξi, vi)}

∥∥∥∥∥
2

V


=

n∑
i=1

E

[
‖fξi(Wvi −Wξi)− F (ξi, vi)‖2V

]
+2
∑
i<j

E
[〈
fξi(Wvi −Wξi)− F (ξi, vi), fξj (Wvj −Wξj )− F (ξj , vj)

〉
V

]
=

n∑
i=1

E

[
‖fξi(Wvi −Wξi)− F (ξi, vi)‖2V

]
+2
∑
i<j

E
[〈
fξi(Wvi −Wξi), fξj (Wvj −Wξj )

〉
V

]
−2
∑
i<j

E
[
〈fξi(Wvi −Wξi), F (ξj , vj)〉V

]
−2
∑
i<j

E
[〈
fξj (Wvj −Wξj ), F (ξi, vi)

〉
V

]
+2
∑
i<j

E
[
〈F (ξi, vi), F (ξj , vj)〉V

]
=

n∑
i=1

E

[
‖fξi(Wvi −Wξi)− F (ξi, vi)‖2V

]
.

(iii) Since F has the orthogonal increment property,

E

∥∥∥∥∥
n∑
i=1

F (ξi, vi)

∥∥∥∥∥
2

V

 =

n∑
i=1

E

[
‖F (ξi, vi)‖2V

]
+2
∑
i<j

E
[
〈F (ξi, vi), F (ξj , vj)〉V

]
=

n∑
i=1

E

[
‖F (ξi, vi)‖2V

]
,

thereby completing the proof. 2

The strong version of Henstock lemma follows from Lemma 2.3(ii).

Lemma 2.4. (Henstock Lemma (Strong Version)). Let f be IH-integrable on

[0, T ] and F (u, v) := (IH)

∫ v

u

ft dWt for any (u, v] ⊂ [0, T ]. Then for every

ε > 0, there exists a δ : [0, T ]→ (0,∞) such that whenever D = {((ξ, v], ξ)} is

Malaysian Journal of Mathematical Sciences 577



Labendia, M. A. & Benitez, J. V.

a δ-�ne belated partial division of [0, T ], we have

(D)
∑

E

[
‖fξ(Wv −Wξ)− F (ξ, v)‖2V

]
< ε.

Lemma 2.5. Let {f (n)} be a sequence of IH-integrable processes on [0, T ] such

that

{
(IH)

∫ T

0

f
(n)
t dWt

}
is Cauchy in L2(Ω, V ). Then for all t ∈ [0, T ], there

exists At ∈ L2(Ω, V ) and the following property is satis�ed: for every ε > 0,
there exists N ∈ N such that for all �nite collection {(ξi, vi]}pi=1 of disjoint
intervals of [0, T ],

E

∥∥∥∥∥
p∑
i=1

{
(IH)

∫ vi

ξi

f
(n)
t dWt − (Avi −Aξi)

}∥∥∥∥∥
2

V

 < ε

whenever n ≥ N .

Proof. Let ε > 0 be given. Since

{
(IH)

∫ T

0

f
(n)
t dWt

}
is Cauchy in

L2(Ω, V ), for all t ∈ [0, T ],

{
(IH)

∫ t

0

f (n)
s dWs

}
is also Cauchy in L2(Ω, V )

by Lemma 2.3(iii). Then for all t ∈ [0, T ], there exists At ∈ L2(Ω, V ) such

that (IH)

∫ t

0

f (n)
s dWs → At in L

2(Ω, V ) as n→∞. Let {(ξi, vi]}pi=1 be a �-

nite collection of disjoint intervals of [0, T ]. Then for all i ∈ {1, 2, . . . , p}, there
exists Ni ∈ N such that for all n ≥ Ni,

E

[∥∥∥∥(IH)

∫ vi

ξi

f
(n)
t − (Avi −Aξi)

∥∥∥∥2

V

]
<

ε

22i
.

Take N = max{Ni : 1 ≤ i ≤ p}. Hence, for n ≥ N , we have

E

∥∥∥∥∥
p∑
i=1

{
(IH)

∫ vi

ξi

f
(n)
t dWt − (Avi −Aξi)

}∥∥∥∥∥
2

V



≤

 p∑
i=1

√√√√
E

[∥∥∥∥(IH)

∫ vi

ξi

f
(n)
t dWt − (Avi −Aξi)

∥∥∥∥2

V

]2

<

(
p∑
i=1

√
ε

2j

)2

≤ ε.
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This completes the proof. 2

We now formulate versions of convergence theorems for the IH-integral.

Theorem 2.5. (Mean Convergence Theorem). Let {f (n)} be a sequence of
IH-integrable processes on [0, T ] and f be an adapted process on [0, T ] such
that

(i) E

[∥∥∥f (n)
t − ft

∥∥∥2

L2(UQ,V )

]
→ 0 a.e. on [0, T ];

(ii)

{
(IH)

∫ T

0

f
(n)
t dWt

}
is Cauchy in L2(Ω, V ).

Then f is IH-integrable on [0, T ] and

(IH)

∫ T

0

f
(n)
t dWt → (IH)

∫ T

0

ft dWt as n→∞.

Proof. Let ε > 0 be given. By Example 2.1, for every t ∈ [0, T ], there exists

N1(t) ∈ N such that for all n ≥ N1(t), E

[∥∥∥f (n)
t − ft

∥∥∥2

L2(UQ,V )

]
<

ε

9T
. By the

weak version of Henstock lemma, for all n ∈ N, there exists a δ : [0, T ]→ (0,∞)
such that whenever D = {((ξ, v], ξ)} is a δ-�ne belated partial division of [0, T ],

E

[∥∥∥∥(Dn)
∑{

f
(n)
ξ (Wv −Wξ)− (IH)

∫ v

ξ

f
(n)
t dWt

}∥∥∥∥2

V

]
<
ε

9
.

Since

{
(IH)

∫ T

0

f
(n)
t dWt

}
is Cauchy in L2(Ω, V ), by Lemma 2.5, for all t ∈

[0, T ], there exists Ft ∈ L2(Ω, V ) with the following property: there exists
N2 ∈ N such that for all �nite collection {(ξi, vi]}pi=1 of disjoint intervals of
[0, T ],

E

∥∥∥∥∥
p∑
i=1

{
(IH)

∫ vi

ξi

f
(n)
t dWt − (Fvi − Fξi)

}∥∥∥∥∥
2

V

 < ε

9
(3)

whenever n ≥ N2. Let F (n)(ξ, v) := (IH)

∫ v

ξ

f
(n)
t dWt for all (ξ, v] ⊂ [0, T ].

Choose N := N(ξ) > max{N1(ξ), N2} and pick δ(ξ) = δN (ξ) for all ξ ∈ [0, T ].
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Let D = {((ξ, v], ξ)} be a δ-�ne belated partial division of [0, T ]. By (Labendia
et al., 2018, Lemma 3.6),

E

[∥∥∥(D)
∑

(fξ − f (N)
ξ )(Wv −Wξ)

∥∥∥2

V

]

= (D)
∑

(v − ξ)E
[∥∥∥fξ − f (N)

ξ

∥∥∥2

L2(UQ,V )

]
<

ε

9T
· T =

ε

9
.

Thus,

E

[∥∥∥(D)
∑
{fξ(Wv −Wξ)− (Fv − Fξ)}

∥∥∥2

V

]

≤ 3E

[∥∥∥(D)
∑

(fξ − f (N)
ξ )(Wv −Wξ)

∥∥∥2

V

]
+3E

[∥∥∥(D)
∑
{F (N)(ξ, v)− (Fv − Fξ)}

∥∥∥2

V

]
+3E

[∥∥∥(D)
∑
{f (N)
ξ (Wv −Wξ)− F (N)(ξ, v)}

∥∥∥2

V

]
<

ε

3
+
ε

3
+
ε

3
= ε.

Next, we show that F is AC2[0, T ]. By Theorem 2.3, F (N) is AC2[0, T ]. Let
η > 0 which responds to 7ε

18 challenge regarding the criterion for the AC2[0, T ]

property of F (N). Let D′ = {(ξ′, v′]} be a disjoint collection of subintervals in
[0, T ] with (D′)

∑
(v′ − ξ′) < η. Then

E

[∥∥∥(D′)
∑

(Fv′ − Fξ′)
∥∥∥2

V

]

≤ 2E

[∥∥∥(D′)
∑

F (N)(ξ′, v′)
∥∥∥2

V

]
+2E

[∥∥∥(D′)
∑{

F (N)(ξ′, v′)− (Fv′ − Fξ′)
}∥∥∥2

V

]
< 2

(
7ε

18

)
+ 2

( ε
9

)
= ε.

Thus, F is AC2[0, T ]. By Theorem 2.4, f is IH-integrable on [0, T ].
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To show that (IH)

∫ T

0

f
(n)
t dWt → (IH)

∫ T

0

ft dWt, let D
c = {(ξ, v]}

be the collection of subintervals of [0, T ] which are not included in D. From
equation (3),

E

∥∥∥∥∥(IH)

∫ T

0

f
(n)
t dWt − (FT − F0)

∥∥∥∥∥
2

V

 < ε

9

whenever n ≥ N2. From the proof of Theorem 2.4, (IH)

∫ T

0

ft dWt = FT −F0.

Thus, (IH)

∫ T

0

f
(n)
t dWt → (IH)

∫ T

0

ft dWt as n→∞. 2

Theorem 2.6. (Dominated Convergence Theorem). Let {f (n)} be a sequence
of IH-integrable processes on [0, T ] and f be an adapted process on [0, T ] such
that

(i) E

[∥∥∥f (n)
t − ft

∥∥∥2

L2(UQ,V )

]
→ 0 a.e. on [0, T ];

(ii) for almost all t ∈ [0, T ] and for almost all ω ∈ Ω,∥∥∥f (n)
t (ω)

∥∥∥
L2(UQ,V )

≤ ‖gt(ω)‖L2(UQ,V ) for all n ∈ N

and that g is IH-integrable on [0, T ].

Then f is IH-integrable on [0, T ] and

(IH)

∫ T

0

f
(n)
t dWt → (IH)

∫ T

0

ft dWt as n→∞.

Proof. Since E

[∥∥∥f (n)
t − ft

∥∥∥2

L2(UQ,V )

]
→ 0 a.e. on [0, T ],

E

[∥∥∥f (n)
t

∥∥∥2

L2(UQ,V )

]
→ E

[
‖ft‖2L2(UQ,V )

]
a.e. on [0, T ].

By Itô isometry, for each n ∈ N, E
[∥∥∥f (n)

t

∥∥∥2

L2(UQ,V )

]
is Lebesgue integrable on

[0, T ]. Moreover, E
[
‖gt‖2L2(UQ,V )

]
is also Lebesgue integrable on [0, T ] with

E

[∥∥∥f (n)
t

∥∥∥2

L2(UQ,V )

]
≤ E

[
‖gt‖2L2(UQ,V )

]
for all n ∈ N.
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Using the dominated convergence theorem for Lebesgue integral, E
[
‖ft‖2L2(UQ,V )

]
is Lebesgue integrable on [0, T ] and

(L)

∫ T

0

E

[∥∥∥f (n)
t

∥∥∥2

L2(UQ,V )

]
→ (L)

∫ T

0

E

[
‖ft‖2L2(UQ,V )

]
as n→∞.

By Itô isometry,
{

(IH)
∫ T

0
f

(n)
t dWt

}
converges in L2(Ω, V ). By Theorem 2.5,

f is IH-integrable on [0, T ] and

(IH)

∫ T

0

f
(n)
t dWt → (IH)

∫ T

0

ft dWt as n→∞.

This completes the proof. 2

Theorem 2.7. If f ∈ Λ0, then f is IH-integrable on [0, T ] and

(IH)

∫ T

0

ft dWt = (I)

∫ T

0

ft dWt.

Proof. Let ε > 0 be given. Let J be a family of all left-open subintervals
(ξ, v] of [0,T]. Suppose that f ∈ Λ0 is given by

f(t, ω) = φ(ω)1{0}(t) +

n−1∑
j=0

φj(ω)1(tj ,tj+1](t).

The function F de�ned by F (ξ, v) = (I)

∫ v

ξ

ft dWt for all (ξ, v] ∈ J , is

AC2[0, T ]. Then there exists η > 0 such that for any �nite collection D =

{(ξ, v]} of disjoint subintervals (ξ, v] ∈ J with (D)
∑

(v − ξ) < η, we have

E

[∥∥∥(D)
∑

F (ξ, v)
∥∥∥2

V

]
<
ε

2
. Let ξ ∈ [0, T ]. We shall only consider ξ 6= tj for

all j = 0, 1, . . . , n − 1. Assume that ξ ∈ (tj , tj+1). Choose δ(ξ) > 0 such that
[ξ, ξ + δ(ξ)) ⊂ (tj , tj+1). It follows that f(ξ, ω) = φj(ω) and

f(ξ, ω)(Wv(ω)−Wξ(ω)) = φj(ω)(Wv(ω)−Wξ(ω))

for any (ξ, v] ⊂ [ξ, ξ + δ(ξ)). Moreover, (I)

∫ v

ξ

ft dWt = φj(Wv −Wξ). Let

D = {((ξ, v], ξ)} be a (δ, η)-�ne belated partial division of [0, T ] with ξ 6= tj for
all j = 0, 1, . . . , n−1 and Dc be the collection of all subintervals of [0, T ] which
are not included in the set D. Then

E

[∥∥∥∥(D)
∑{

fξ(Wv −Wξ)− (I)

∫ v

ξ

ft dWt

}∥∥∥∥2

V

]
= 0.
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Moreover,

E

[∥∥∥∥(Dc)
∑{

(I)

∫ v

ξ

ft dWt

}∥∥∥∥2

V

]
<
ε

2
.

Hence,

E

∥∥∥∥∥(D)
∑

fξ(Wv −Wξ)− (I)

∫ T

0

ft dWt

∥∥∥∥∥
2

V


≤ 2E

[∥∥∥∥(D)
∑

fξ(Wv −Wξ)− (I)

∫ v

ξ

ft dWt

∥∥∥∥2

V

]

+2E

[∥∥∥∥(Dc)
∑{

(I)

∫ v

ξ

ft dWt

}∥∥∥∥2

V

]
< ε.

Thus, f is IH-integrable to (I)

∫ T

0

ft dWt 2

The next result shows that if a process f : [0, T ] × Ω → L(U, V ) is Itô
integrable, then it is Itô-Henstock integrable.

Theorem 2.8. If f ∈ Λ2, then f is IH-integrable on [0, T ] and

(IH)

∫ T

0

ft dWt = (I)

∫ T

0

ft dWt.

Proof. Let ε > 0 be given. By Proposition 1.2 and Fubini-Tonelli theorem
(Lavrent'ev and Savel'ev, 2006, p.306), there exists a sequence {f (n)}, fn ∈ Λ0,
such that

(L)

∫ T

0

E

[∥∥∥f (n)
t − ft

∥∥∥2

L2(UQ,V )

]
dt→ 0 as n→∞.

By the partial converse of Lebesgue dominated convergence theorem (Uribe
and Fiorenza, 2013, p.49), there exists a subsequence {f (nm)} of {f (n)} such
that

E

[∥∥∥f (nm)
t − ft

∥∥∥2

L2(UQ,V )

]
→ 0 a.e. on [0, T ].

By Proposition 1.2,

E

∥∥∥∥∥(I)

∫ T

0

(f
(nm)
t − ft) dWt

∥∥∥∥∥
2

V

 = E

[
(L)

∫ T

0

∥∥∥f (nm)
t − ft

∥∥∥2

L2(UQ,V )
dt

]
→ 0.

Malaysian Journal of Mathematical Sciences 583



Labendia, M. A. & Benitez, J. V.

By Theorem 2.7,
{

(IH)
∫ T

0
f

(nm)
t dWt

}
m∈N

converges in L2(Ω, V ). By Theo-

rem 2.5, f is IH-integrable on [0, T ] and in L2(Ω, V )

(IH)

∫ T

0

ft dWt = lim
m→∞

(IH)

∫ T

0

f
(nm)
t dWt

= lim
m→∞

(I)

∫ T

0

f
(nm)
t dWt

= (I)

∫ T

0

ft dWt.

This completes the proof. 2

3. Conclusion and Recommendation

In this paper, we formulate versions of convergence theorems for the Itô-
Henstock integral of an operator-valued stochastic process with respect to a
Hilbert space-valued Q-Wiener process. We then use some of these theorems
to verify that the classical Itô integral of an operator-valued stochastic process
can be de�ned using Henstock approach. A worthwhile direction for further
investigation is to use Henstock approach to de�ne the stochastic integral with
respect to a cylindrical Wiener process introduced by Riedle (2011).
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